INSTITUT DE PHYSIQUE DU GLOBE Service des Observatoires Magnétiques 5, rue René Descartes 67084 STRASBOURG CEDEX FRANCE

Tél. 88 41 63 00 Télex 890518 F

OBSERVATIONS MAGNÉTIQUES

PORT-AUX-FRANÇAIS (Kerguelen)

L'Institut de Physique du Globe de Paris a assuré jusqu'en 1979 la publication et la diffusion des observations magnétiques faites aux observatoires des Terres Australes et Antarctiques Françaises. Les données des années 1957 et 1958 ont été publiées dans les Publications Françaises de l'Année Géophysique Internationale (série III, fascicule 4, 1962), celles des années 1959 à 1963 dans les Annales de l'Institut de Physique du Globe de Paris (tomes XXXII, 1964 et XXXIV, 1966) et celles des années 1964 à 1978 dans les fascicules «Observations Magnétiques» édités entre 1969 et 1979.

A compter du 1^{er} janvier 1980, ces données sont publiées et diffusées par l'Institut de Physique du Globe de Strasbourg. La présentation sous forme de fascicules a été conservée, chaque fascicule étant consacré à une année d'observations et à un observatoire.

Le fonctionnement de l'observatoire magnétique de Port-aux-Français est pris en charge par le Territoire des Terres Australes et Antarctiques Françaises.

OBSERVATIONS MAGNÉTIQUES faites à l'Observatoire de Port-aux-Français KERGUELEN - 1986

par

J. BITTERLY, J. FOLQUES, R. SCHLICH, D. WLOSZCZOWSKI et V. DAURELLE

Ce fascicule présente les résultats des observations magnétiques faites à l'Observatoire de Port-aux-Français (Kerguelen) durant l'année 1986. Cet observatoire permanent a été créé en 1957 à l'occasion de l'Année Géophysique Internationale avec le support logistique et financier du Territoire des Terres Australes et Antarctiques Françaises, il est placé sous la responsabilité scientifique de l'Institut de Physique du Globe de Strasbourg. A Port-aux-Français, les mesures absolues sont réalisées avec un magnétomètre théodolite portable à vanne de flux pour les mesures des éléments D, I, H, Z et avec un magnétomètre à protons à précession libre GEOMETRICS G-816 pour la mesure de l'intensité du champ total. L'enregistrement continu des variations du champ magnétique terrestre est assuré à l'aide d'un variomètre tri-axial à vanne de flux et d'un magnétomètre à protons spécialement adapté. Un dispositif d'acquisition numérique à faible consommation (technologie C-MOS) effectue la numérisation et la mise en forme des signaux délivrés par les capteurs. Les informations «champ magnétique» sont échantillonnées toutes les minutes et sont enregistrées sur bande magnétique ou sur disque souple. Les données sont traitées sur un mini-ordinateur HP 1000. Les valeurs moyennes horaires et les valeurs instantanées sont archivées sur bandes magnétiques et diffusées annuellement aux Centres Mondiaux concernés.

PORT-AUX-FRANÇAIS (Kerguelen islands),

Magnetic results 1986

This report presents the results of geomagnetic measurements carried out at the french magnetic observatory of Port-aux-Français (Kerguelen islands) during the year 1986. This permanent observatory has been established in May 1957 with the logistic and financial support of Territoire des Terres Australes et Antarctiques Françaises and is operated by Institut de Physique du Globe de Strasbourg (Service des Observatoires Magnétiques). At Port-aux-Français absolute measurements are made with an IPGS portable magnetometer theodolite with fluxgate sensor (D, I, H, Z) and a proton precession magnetometer type GEOMETRICS G-816 (total intensity F). A three components fluxgate variometer and a proton magnetometer are used to monitor the geomagnetic field variations. A low-power data logger (C-MOS technology) samples the field values at one minute intervals. The data are recorded on magnetic tape or floppy disk and processed on a HP 1000 computer. Annual means, hourly means and one minute values for all the observed magnetic elements are supplied on magnetic tape and sent on a yearly basis to the World Data Centers for Geomagnetism. Copies of this data may be obtained from these centers.

3

L'observatoire magnétique de Port-aux-Français aux îles Kerguelen a été créé en 1957 à l'occasion de l'Année Géophysique Internationale, il a été entièrement rénové au cours de l'été austral 1971-1972 (SCHLICH et al., 1974). Le variomètre tri-axial à vanne de flux, construit par la société THOMSON-CSF DASM, a été transféré vers un nouveau site en janvier 1977 mais l'abri de mesures absolues, rénové en 1972, n'a pas été modifié (SCHLICH et al., 1978).

En 1986, D. WLOSZCZOWSKI et V. DAURELLE ont séjourné à Portaux-Français où ils étaient chargés du programme des observations magnétiques.

CARACTÉRISTIQUES DE L'OBSERVATOIRE (OBSERVATORY CONSTANTS)

Code (IAGA code): KGL Latitude géographique (geographic latitude): $49^{\circ}21'S$ Longitude géographique (geographic longitude): $70^{\circ}12'S$ Latitude géomagnétique (geomagnetic latitude): $56,5^{\circ}S$ Longitude géomagnétique (geomagnetic longitude): $127,8^{\circ}E$ Altitude (Heigh above msl): 15 m Limite pour K = 9 (lower limit for K = 9): 750 nT

L'observatoire de Port-aux-Français comporte un magnétomètre tri-directionnel à vanne de flux et un magnétomètre à protons (résolution 0,25 nT) pour l'enregistrement des variations lentes des composantes H, D, Z et de l'intensité F du champ magnétique terrestre. Les informations sont enregistrées numériquement toutes les minutes sur bande magnétique, sur minicassette et sur disque souple. Une imprimante et un enregistreur graphique du type potentiométrique complètent les équipements déjà cités.

MESURES ABSOLUES

Les mesures absolues (D, I, H et Z) ont été effectuées en 1986 à l'aide du magnétomètre théodolite portable à vanne de flux, construit et mis au point par le service des observatoires magnétiques de l'Institut de Physique du Globe (BITTERLY et al., 1984). Cet appareil est constitué d'un théodolite ZEISS 010 B (version amagnétique) spécialement adapté pour recevoir une sonde à vanne de flux dont la résolution est de 0,2 nT. Les mesures de déclinaison et d'inclinaison sont réalisées avec une précision meilleure que cinq secondes d'angle. Des mesures directes de l'intensité des composantes horizontale H et verticale Z, sont également possibles grâce à un circuit de courant de compensation stable et ultralinéaire: dans ce cas, la calibration est contrôlée à chaque série de mesures par association avec un magnétomètre à protons. La précision des mesures directes des éléments H et Z est de l'ordre du nanotesla. Les mesures de l'intensité du champ total F sont effectuées régulièrement au pilier absolu à l'aide d'un magnétomètre GEOMETRICS

G-816, il est ainsi possible de contrôler l'évolution de la valeur de la différence de champ entre le «pilier absolu» et l'emplacement de la sonde à protons installée dans l'abri des variomètres.

ENREGISTREMENT DES VARIATIONS DU CHAMP MAGNÉTIQUE

Le schéma synoptique de la chaîne de mesure est représenté sur la figure 1. Les caractéristiques essentielles du variomètre à vanne de flux, du magnétomètre à protons et des dispositifs d'enregistrement associés, sont données ci-dessous:

Variomètre tri-directionnel VFO.31

- sensibilité: 5 mV/nT (précision 0,1%)
- bruit: 0,1 nT crête à crête, dans la bande 0 à 0,5 Hz
- stabilité thermique du capteur: meilleure que 0,1 nT/°C
- stabilité thermique de l'électronique associée: meilleure que 0,15 nT/°C
- coefficient de température de la référence tension: 4 ppm/°C
- stabilité thermique du coffret mesure: meilleure que 0,2 nT/°C
- température de fonctionnement du capteur et de l'électronique associée:
 19°C ± 2°C
- stabilité à long terme: meilleure que 1 nT/mois.

Les caractéristiques indiquées sont valables pour un champ compensé de 50000 nT.

Magnétomètre à protons à précession libre

précision : 1 nTrésolution : 0,25 nT

Dispositif d'enregistrement numérique

Le dispositif d'acquisition numérique (BITTERLY et al., 1979) reçoit les signaux délivrés par les capteurs, variomètre tri-axial et magnétomètre à protons associé, et les convertit en informations numériques. Ce dispositif (technologie C-MOS faible consommation) a pour principales fonctions:

- la génération des informations de temps,
- le multiplexage des signaux analogiques (H, D, Z),
- la conversion analogique/numérique de ces signaux,
- la mise au format d'enregistrement de ces signaux,
- le déclenchement de la mesure du champ total F et la transmission du train d'impulsions correspondant à la mesure,
- la mise au format d'enregistrement de l'ensemble des informations numériques (codage Décimal Codé Binaire),
- la génération des signaux de commande de l'enregistreur magnétique faible consommation (7 pistes, 200 bpi).

Une unité d'enregistrement sur minicassettes est connectée au dispositif d'acquisition numérique.

Caractéristiques du dispositif d'acquisition numérique:

- dynamique: 1000 nT (10000 points)
- résolution : 0,1 nT
- durée d'intégration du signal: 40 ms par composante (H, D, Z)
- cadence d'échantillonnage: une information toute les minutes.

La chaîne de mesure est complétée par un micro-ordinateur 32 K et une unité de disques souples (5"1/4). Il est ainsi possible d'effectuer, en temps réel, un test de vérification de la cohérence entre les valeurs instantanées du champ total reconstitué à partir de trois éléments H, D, Z, et les valeurs du champ total mesurées par le magnétomètre à protons.

Les informations «champ magnétique» sont enregistrées séquentiellement dans l'ordre H, D, Z et F. Toutes les vingt minutes, ces informations sont complétées par l'indicatif de l'observatoire, la date et l'heure. La précision du temps est de l'ordre de 0,5 seconde.

Enregistrement graphique associé

L'enregistreur à 4 voies, du type potentiométrique, a une sensibilité de 8 nT/mm, la vitesse d'enregistrement est de 20 mm/heure.

RÉDUCTION DES OBSERVATIONS

Pour l'année 1986, toutes les observations ont été ramenées au pilier de référence, dit «pilier absolu»; le magnétomètre théodolite portable à vanne de flux a été utilisé de façon régulière et il constitue, comme en 1985, l'appareil de référence de l'observatoire. Pour les composantes H, D et Z, les valeurs H_O , D_O et Z_O de la ligne de base correspondent au zéro électrique des variomètres, défini pour une valeur choisie du courant de compensation. Pour le champ total F, la stabilité de la ligne de base dépend essentiellement de l'oscillateur de référence, sa valeur F_O est définie par la différence de champ entre le «pilier absolu» et l'emplacement de la sonde à protons.

Il n'existe pas de discontinuité entre le réseau de mesures 1985 et le réseau 1986; les conditions d'observation n'ont pas été modifiées.

Les valeurs de base H_0 , D_0 , Z_0 pour l'enregistrement numérique sont données ci-dessous; elles sont exprimées en nanoteslas pour H_0 , Z_0 et F_0 et en degrés, minutes et dixièmes de minute pour D_0 .

```
D_0 = -51^{\circ}43,8' + 0,009* J
                                    du 01.01. au 23.01.1986
D_0 = -51°43,5' - 0,006* J
                                    du 24.01. au 17.03.1986
D_0 = -51^{\circ}43,7' - 0,002*J
                                    du 18.03. au 02.10.1986
D_0 = -51^{\circ}45, 6' + 0,006* J
                                    du 03.10. au 31.12.1986
Z_0 = -43772,4 + 0,019*J
                                    du 01.01. au 16.02.1986
Z_0 = -43770.9 - 0.013 * J
                                    du 17.02. au 04.07.1986
Z_0 = -43777,4 + 0,023 * J
                                    du 05.07. au 20.08.1986
Z_0 = -43772.8 + 0.003 * J
                                    du 21.07. au 31.12.1986
F_0 = -1189.3 + 0.015*J
                                    du 01.01. au 09.05.1986
F_0 = -1186,9 - 0,003 * J
                                    du 10.05. au 06.09.1986
F_0 = -1184,4 - 0,013*J
                                    du 07.09. au 15.12.1986
F_0 = -1197.7 + 0.024 * J
                                    du 16.12. au 31.12.1986
```

Pour chaque élément enregistré, on observe des périodes de temps pour lesquelles il existe une évolution régulière en fonction du temps des valeurs calculées des lignes de base. On a donc calculé, pour ces intervalles de temps, par la méthode des moindres carrés, les équations liant linéairement les valeurs H_0 , D_0 , Z_0 et F_0 , des lignes de base au numéro J du jour dans l'année. Compte tenu du faible taux d'évolution observé (inférieur à 1 nT/mois dans tous les cas), cette approximation n'entraîne pas d'erreur appréciable pour les valeurs calculées des éléments H, D et Z du champ magnétique. Comme en 1985, on a mesuré journellement la différence de champ total entre le pilier absolu et l'emplacement de la sonde à protons dans l'abri variomètre. La valeur calculée F_0 pour cette différence évolue faiblement en cours d'année et les écarts extrêmes observés pour cette évolution saisonnière demeurent inférieurs à cinq nanoteslas.

Les valeurs instantanées et les valeurs de champ moyen ont été calculées à partir des valeurs numériques H, D, Z et F enregistrées sur minicassettes et sur disques souples.

PRÉSENTATION DES RÉSULTATS

Les valeurs publiées dans les tableaux qui suivent sont les valeurs moyennes horaires, centrées sur les demi-heures T.U. Pour la présentation des tableaux de valeurs moyennes, on a utilisé les mêmes normes que celles définies dans les publications de l'Année Géophysique Internationale (SCHLICH, 1962). Les jours calmes et perturbés internationaux sont repérés par les lettres Q et D. Les moyennes diurnes n'ont pas été calculées pour les jours où manquaient plus de 12 données horaires; pour les jours où le nombre de données manquantes était inférieur ou égal à 12, on a substitué à ces données les moyennes mensuelles des heures correspondantes, valeurs qui figurent dans les dernières lignes des tableaux. Les moyennes diurnes ainsi obtenues sont signalées par une parenthèse. La moyenne de toutes les valeurs fournit la valeur moyenne mensuelle.

Dans les tableaux, toutes les valeurs de H, exprimées en nanoteslas, sont données par rapport à une base de 18000 nanoteslas, les valeurs de D, exprimées en 1/10 minute, sont rapportées à une base de 52°W et celles de Z, exprimées en nanoteslas à une base de -43500 nanoteslas. On obtient les valeurs moyennes horaires pour les différentes composantes du champ terrestre en ajoutant ou retranchant aux valeurs de base les chiffres inscrits dans les tableaux.

On a calculé en outre, pour chacune des composantes enregistrées, afin de déterminer les variations journalières du champ, les écarts horaires moyens pour tous les jours, les jours calmes et les jours perturbés internationaux. Ces résultats, exprimés suivant le cas en 1/10 de nanotesla ou 1/100 minute, sont rassemblés dans des tableaux distincts. L'été correspond aux mois de novembre, décembre, janvier, février et l'hiver aux mois de mai, juin, juillet, août.

Les moyennes à partir desquelles est déterminée la variation séculaire sont données ci-dessous:

Composante	Moyenne annuelle 1986,5	Variation séculaire					
Horizontale H Déclinaison D Verticale Z Champ total F	18340 nT 52°13, 9°W - 43699 nT 47392 nT	- 27 nT + 10,2' W 0 nT - 11 nT					

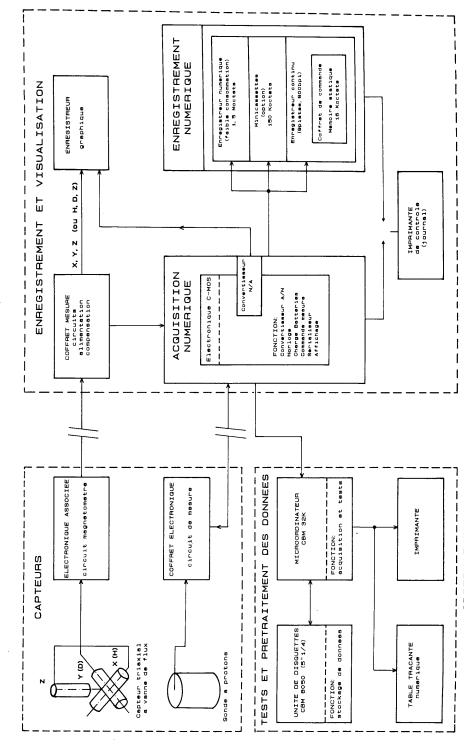
TABLEAUX DES DONNÉES

- Valeurs moyennes horaires pour H, D et Z pour 1986.
- Ecarts horaires moyens pour H, D, et Z pour tous les jours, les jours calmes et les jours perturbés pour 1986.
- Valeurs moyennes mensuelles calculées pour les éléments du champ magnétique pour tous les jours de l'année 1986.
- Valeurs moyennes annuelles des éléments du champ magnétique (1957-1986).
- Valeurs déterminées pour la variation séculaire des éléments du champ magnétique (1958-1986).
- Indices K pour l'année 1986.
- Caractéristiques des principaux orages magnétiques enregistrés en 1986 à l'observatoire de Port-aux-Français.

RÉFÉRENCES

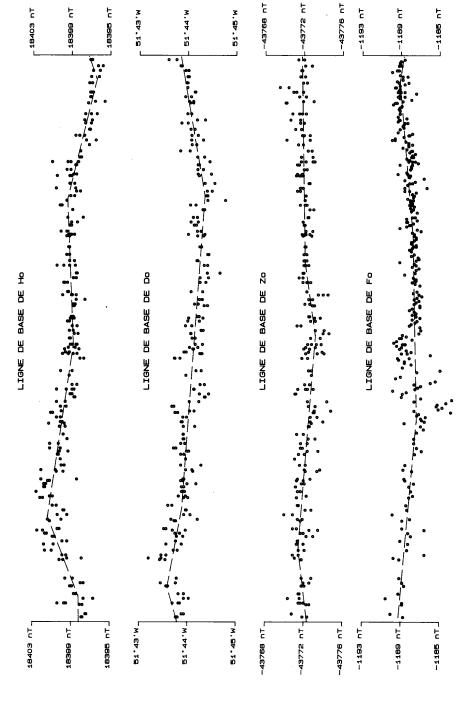
SCHLICH R., 1962 – Etude des observations réalisées à la station de Port-aux-Français (Kerguelen), septembre 1957 à décembre 1958. Publication Française de l'A.G.I., CNRS, série III, fascicule 4. SCHLICH R., BITTERLY J., BENZONI A. et HALLEGUEN P., 1974 – Observations magnétiques faites à l'observatoire de Port-aux-Français (Kerguelen), 1972.

Fascicule Institut de Physique du Globe de Paris.


SCHLICH R., BITTERLY J., MARTIN Y., et VIOT P., 1978 – Observations magnétiques faites à l'observatoire de Port-aux-Français (Kerguelen), 1977. Fascicule Institut de Physique du Globe de Paris.

BITTERLY J., CANTIN J.M. et SCHLICH R., 1979 – Enregistrement numérique des variations du champ magnétique dans les observatoires français de haute latitude.

Communication présentée à la XVII^e Assemblée Générale de l'UGGI, Canberra, décembre 1979.


BITTERLY J., CANTIN J.M., SCHLICH R., FOLQUES J. et GILBERT D., 1984 – Portable magnetometer with fluxgate sensor for earth's magnetic field component measurements.

Geophysical Surveys 6, p. 233-239.

OBSERVATOIRES DES TERRES AUSTRALES ET ANTARCTIQUES FRANCAISES
ENREGISTREMENT NUMERIQUE DES VARIATIONS DU CHAMP MAGNETIQUE
SCHEMA SYNOPTIQUE DE LA CHAINE DE MESURE

PORT-AUX-FRANCAIS (KERGUELEN) 49'21'S -'70 12'E VALEURS MOYENNES MENSUELLES ANNEE 1986 - REPERES ACTUELS TOUS LES JOURS

 MOIS	l I D	 (I) 	I I H	 (X) 	 (Y) 	l I Z I	 (F) 	
JANV	-52 ⁰⁸ .5	 -67 ⁻ 12.7	l l 18357	l l 11266	 -14493	I I- 4 3695	I I 47394	
FEVR	-52 ⁻ 12.1	 -67 ⁻ 14.4	18336	1 11238	I-14489	 - 4 3705	l 47396	
MARS	-52 ⁻ 11.9	 -67 ¹ 3.9	18343	1 11243	I I-14494	I I- 4 3707	l l 47400	
AVRI	-52 ⁻ 12.1	 -67 13.6	18346	11244	 -14496	 - 4 3702	l l 47396	47396
MAI	-52'13.2	-67 ⁻ 13.9	18342	11236	 -14497	I I− 4 3702	l i 4 7395	l 47394 l
JUIN	-52 ⁻ 13.1	-67 ¹ 3.5	18345	l l 11239	 -14499	I I-43696	l I 47390	
JUIL	-52 13.8	-67 ¹ 3.7	18343	11235	 -14499	I I−43696	l I 4 7390	l 47390 l
AOUT	-52 ¹ 5.1	-67 ¹ 4.1	18336	11226	 -14499	I I−43696	l I 4 7387	 47 387
SEPT	-52 ⁻ 16.3	-67'14.6	18330	11216	 -14497	l -43696	l 47385	l 47385 l
OCTO	-52 ¹ 6.6	-67 ¹ 4.3	18334	11218	 -1 4 502	 - 4 3699	 4 7389	 4 7389
NOVE	-52 ¹ 7.4	-67 ¹ 14.5	18332	11213	 -14502	l I−43698	l 47388	l 47387 l
IDECE I	-52 ⁻ 17.0	 -67 ⁻ 14.0 	18339 (11219	 -14507 	 -4369 8 	473 9 0	47390 47390
MOY. I	-52 ⁻ 13.9	-67 ¹ 3.9	18340	11233	 -14498 	 -43699 -43699	 47392 	47392
<u> </u>					1		<u> </u>	<u> </u>

(F) : F calculé à partir de la relation $(F^2=H^2+Z^2)$

F enr. : F enregistré (données fournies par le magnétomètre à protons)

Eléments enregistrés à Port-aux-Français : D,F,H,Z

Valeurs de D et de I : en degrés, minutes et dixièmes de minutes

Valeurs de H,X,Y,Z,F: en nanoteslas

PORT-AUX-FRANCAIS (KERGUELEN) 49'21'S - 70'12'E

VALEURS MOYENNES ANNUELLES 19..,5 - REPERES ACTUELS

TOUS LES JOURS

				······································						_
AN. AN.	D I	(I) 	H 1	(X)	(Y)	Z ((F)	 	F enr.	1
i i	1	İ	ı	1	1	ı		ţ.		1
11957.51	-47 37.71	-66'56.41	18741	126301	-13845	-44024		1	_	!
11958.51	-47 49.41	-66'58.41	187271	125731	-138781	-44061		l	-	1
11959.51	-47 58.71	-67'00.61	187251	12534		-44134		1	-	١
11960.51	-48 07.51	-67'02.01	187271	125011		-44190		1	-	1
11961.51	-48'22.71	-67'02.91	187331	124431		-44236		1	-	1
11962.51	-48'32.61	-67'03.91	187281	123991	-140361	-44261		1	-	1
11963.51		-67'05.51	18715	12331	-140791	-44286		1	-	1
11964.51	-48'57.11	-67'06.41	187071	122851	-141081	-44300		1	_	١
11965.51	-49 09.41	-67'07.51	186901	12223	-141391	-44301		1	-	İ
11966.51		-67'08.91	186681	121691	-141561	-44295	48068	1	_	١
11967.51		-67'09.61	186531	12128	-141721	-44287	48055	1	-	١
11968.5		-67 10.21	186371	12081	-141921	-44269	48032	1	-	١
11969.51		-67 11.11	186101	120221	-142051	-44237	47992	1	-	١
11970.51		-67'11.11	185921	119691	-142281	-44198	47950	1	-	1
11971.51		-67'10.81	18575	11924	-14243	-44146	47895	1	· -	ı
11972.51		-67 10.51	185551	11875	-142581	-44087	47833	1	47828	ı
11973.5		-67 10.31	18537	11827	-142741	-44038	47781	1	47782	١
11974.51		-67 10.21	185221		-142951	-43999	47739	1	47739	ţ
11975.5						-43961	47699	ļ	47701	1
11976.5		-67.09.71	18500		•	-43927	1 47664	1	47665	1
11977.5	·		18488			-43893	47628	1	47629	i
11978.5		-67 10.11	18472			-43874	47604	1	47605	-1
11979.5						-43847	47575	1	47577	١
11980.5		-67 09.51				-43814	47542	1	47543	١
	•					-43793	47514	i	47515	١
11981.5			_				•	i	47481	1
11982.5							•	١	47445	1
11983.5				• –				i	47417	
11984.5	•						•	i	47401	1
11985.5			18340				•	i	47392	i
11986.5	-52 13.9	-0/ 13.71	10240	1 11233	, 14400;	40077	1	i		ĺ
1				L	L					_

(F) : F calculé à partir de la relation (F²=H²+Z²)

F enr. : F enregistré (données fournies par le magnétomètre à protons)

Eléments enregistrés à Port-aux-Français : D,F,H,Z

Valeurs de D et de I : en degrés, minutes et dixièmes de minutes

Valeurs de H,X,Y,Z,F: en nanoteslas

PORT-AUX-FRANCAIS (KERGUELEN) 49'21'S -'70 12'E VARIATION SECULAIRE - REPERES ACTUELS TOUS LES JOURS

														_
AN.	D	(I) 	Н	1	(X)	! !	(Y)	1	z	1	(F)	 	F enr	1 . 1 <u>1</u>
1 1	1	ĺ		1		1		1		1		ı		ļ
1958	-11.7' l	-02.0'	-14	١	-57	1	-32	1	-38	1	29	1	-	1
1959	-09.4' 1	-02.2' 1	-2	-1	-39	1	-33	1	-73	-	66	1	-	١
I 1960 I	-08.8'	-01.4' l	3	ı	-34	-1	-34	- 1	-56	- 1	53	1	_	1
1961	-15.2' I	-00.9' 1	6	1	-58	1	-60	1	-46	ı	44	١	_	ı
1962	-09.8' l	-01.0'	-5	1	-44	1	-32	١	-25	1	21	ļ	-	ı
1963	-14.6' l	-01.5'	-1.3	1	-68	1	-43	1	-26	١	19	1		١
1964	-10.0' I	-01.0'	-9	-1	-47	1	-29	١	-14	- 1	9	1	-	ı
1 1965 1	-12.3' I	-01.1' I	-17	1	-61	1	-31	- 1	-0	İ	-6	1	-	1
1966	-09.5' l	-01.3'	-22	- 1	-54	1	-17	1	5	١	-13	١	_	ł
1 1967 I	-07.7' l	-00.7'	-14	1	-41	1	-16	-1	8	1	-13	1	-	-1
I 1968 I	-09.0' l	-00.6'	-16	1	-48	ı	-19	ŧ	18	1	-23	- 1	-	۱
1 1969 I	-09.9' l	-00.9'	-27	-1	-59	- 1	-14	- 1	33	1	-41	1	-	ı
1970	-10.2' I	-00.1'	-17	1	-53	1	-22	- 1	38	1	-42	-1	-	١
1971	-08.1' I	00.3'	-17	1	-45	-1	-15	1	52	-1	-54	-1		1
1972	-08.8' I	00.3'	-20	1	-49	1	-15	1	59	-	-62	1	-	1
1973	-08.6' 1	00.2'	-18	1	-47	1	-16	i	49	1	-52	1	-46	-1
1974	-09.5' l	00.1'	-15	1	-49	1	-21	-	39	1.	-42	- 1	-43	١
1975	-08.4'	00.4'	-11	1	-42	1	-20	-1	38	-1	-40	1	-38	ı
1976	-10.4'	00.2'	-11	1	-50	1	-27	1	33	- 1	-35	1	-36	1
I 1977 I	-09.7' l	00.2'	-12	1	-48	- 1	-24	1	35	1	-36	1	-36	1
1978	-08.3' 1	-00.6'	-17	- 1	-45	- 1	-15	1	18	-1	-23	1	-23	- (
I 1979 I	-08.9' I	00.2'	-8	t	-43	1	-24	1	28	1	-29	-1	-29	١
1980	-07.6' 1	00.4'	I –8	-	-37	1	-19	1	33	- 1	-33	ı	-34	1
1 1981	-08.7' l	-00.9'	-22	1	-51	1	-12	1	21	١	-28	1	-28	١
1 1982	-07.7'	-00.6'	-21	ı	-45	1	-9	-1	27	1	-33	-1	-33	١
I 1983 I	-07.2'	00.01	-14	١	-39	-1	-13	1	34	1	-36	1	-36	1
1 1984	-08.2'	-00.5'	-17	1	-45	1	-13	1	24	- 1	-29	1	-29	-
1985	-08.1'	-00.8'	-16	1	-44	1	-14	1	10	1	-15	١	-16	1
1986	-09.9' I	-01.7'	l −25	1	-57	-	-13	- 1	-1	-	-9	-	-9	1
	1					1		1				1		

(F) : F calculé à partir de la relation ($F^2=H^2+Z^2$)

F enr. : F enregistré (données fournies par le magnétomètre à protons)

Eléments enregistrés à Port-aux-Français : D,F,H,Z

La variation séculaire VS est définie par la différence entre les valeurs moyennes annuelles des années n et n-1.

La valeur de VS est exprimée, selon le cas, en nanotesla ou en minute et dixième de minute.